3.29.61 \(\int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx\) [2861]

3.29.61.1 Optimal result
3.29.61.2 Mathematica [C] (verified)
3.29.61.3 Rubi [A] (verified)
3.29.61.4 Maple [A] (verified)
3.29.61.5 Fricas [C] (verification not implemented)
3.29.61.6 Sympy [F]
3.29.61.7 Maxima [F]
3.29.61.8 Giac [F]
3.29.61.9 Mupad [F(-1)]

3.29.61.1 Optimal result

Integrand size = 28, antiderivative size = 96 \[ \int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=-\frac {1}{5} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {37}{25} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {13 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{25 \sqrt {33}} \]

output
-37/75*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-13/8 
25*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-1/5*(1-2 
*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)
 
3.29.61.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.70 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.92 \[ \int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\frac {1}{825} \left (-165 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+407 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-420 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right ) \]

input
Integrate[(2 + 3*x)^(3/2)/(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]),x]
 
output
(-165*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] + (407*I)*Sqrt[33]*Ellipti 
cE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (420*I)*Sqrt[33]*EllipticF[I*ArcSin 
h[Sqrt[9 + 15*x]], -2/33])/825
 
3.29.61.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {113, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(3 x+2)^{3/2}}{\sqrt {1-2 x} \sqrt {5 x+3}} \, dx\)

\(\Big \downarrow \) 113

\(\displaystyle -\frac {1}{15} \int -\frac {3 (74 x+47)}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {1}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{10} \int \frac {74 x+47}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {1}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{10} \left (\frac {13}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {74}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {1}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{10} \left (\frac {13}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {74}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {1}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{10} \left (-\frac {26 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{5 \sqrt {33}}-\frac {74}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {1}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

input
Int[(2 + 3*x)^(3/2)/(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]),x]
 
output
-1/5*(Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]) + ((-74*Sqrt[11/3]*Ellipt 
icE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 - (26*EllipticF[ArcSin[Sqrt 
[3/7]*Sqrt[1 - 2*x]], 35/33])/(5*Sqrt[33]))/10
 

3.29.61.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 113
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.29.61.4 Maple [A] (verified)

Time = 1.36 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.46

method result size
default \(-\frac {\sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (36 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-37 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )+450 x^{3}+345 x^{2}-105 x -90\right )}{75 \left (30 x^{3}+23 x^{2}-7 x -6\right )}\) \(140\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {\sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{5}+\frac {47 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{525 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {74 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{525 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(186\)
risch \(\frac {\left (-1+2 x \right ) \sqrt {3+5 x}\, \sqrt {2+3 x}\, \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{5 \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \sqrt {1-2 x}}+\frac {\left (\frac {47 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{550 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {37 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, \left (\frac {E\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{15}-\frac {2 F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{3}\right )}{275 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right ) \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(241\)

input
int((2+3*x)^(3/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/75*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(36*5^(1/2)*(2+3*x)^(1/2)* 
7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/ 
2))-37*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*Elliptic 
E((10+15*x)^(1/2),1/35*70^(1/2))+450*x^3+345*x^2-105*x-90)/(30*x^3+23*x^2- 
7*x-6)
 
3.29.61.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.51 \[ \int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=-\frac {1}{5} \, \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - \frac {632}{3375} \, \sqrt {-30} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + \frac {37}{75} \, \sqrt {-30} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right ) \]

input
integrate((2+3*x)^(3/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="fricas")
 
output
-1/5*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) - 632/3375*sqrt(-30)*weier 
strassPInverse(1159/675, 38998/91125, x + 23/90) + 37/75*sqrt(-30)*weierst 
rassZeta(1159/675, 38998/91125, weierstrassPInverse(1159/675, 38998/91125, 
 x + 23/90))
 
3.29.61.6 Sympy [F]

\[ \int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\int \frac {\left (3 x + 2\right )^{\frac {3}{2}}}{\sqrt {1 - 2 x} \sqrt {5 x + 3}}\, dx \]

input
integrate((2+3*x)**(3/2)/(1-2*x)**(1/2)/(3+5*x)**(1/2),x)
 
output
Integral((3*x + 2)**(3/2)/(sqrt(1 - 2*x)*sqrt(5*x + 3)), x)
 
3.29.61.7 Maxima [F]

\[ \int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {3}{2}}}{\sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((2+3*x)^(3/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="maxima")
 
output
integrate((3*x + 2)^(3/2)/(sqrt(5*x + 3)*sqrt(-2*x + 1)), x)
 
3.29.61.8 Giac [F]

\[ \int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {3}{2}}}{\sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((2+3*x)^(3/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="giac")
 
output
integrate((3*x + 2)^(3/2)/(sqrt(5*x + 3)*sqrt(-2*x + 1)), x)
 
3.29.61.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{3/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\int \frac {{\left (3\,x+2\right )}^{3/2}}{\sqrt {1-2\,x}\,\sqrt {5\,x+3}} \,d x \]

input
int((3*x + 2)^(3/2)/((1 - 2*x)^(1/2)*(5*x + 3)^(1/2)),x)
 
output
int((3*x + 2)^(3/2)/((1 - 2*x)^(1/2)*(5*x + 3)^(1/2)), x)